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1. INTRODUCTION 

Recently, blind source separation by independent component analysis (ICA) has received atten- 
tion because of its potential applications in signal processing such as in speech recognition systems, 
telecommunications, and medical signal processing. The goal of ICA is to recover independent 
sources given only sensor observations that are unknown linear mixtures of the unobserved in- 
dependent source signals. In contrast to correlation-based transformations such as principal 
component analysis (PCA), ICA not only decorrelates the signals (2nd-order statistics) but also 
reduces higher-order statistical dependencies, attempting to make the signals as independent as 
possible. 

Two different research communities have considered the analysis of independent components. 
On one hand, the study of separating mixed sources observed in an array of sensors has been a 
classical and difficult signal processing problem. The seminal work on blind source separation 
was by Herault and Jutten [9] where they introduced an adaptive algorithm in a simple feedback 
architecture that was able t o  separate several unknown independent sources. Their approach has 
been further developed by Jutten and Herault [lo], Karhunen and Joutsensalo [5], and Cichocki et  
al. [Ill .  Comon [7] elaborated the concept of independent component analysis and proposed cost 
functions related to the approximate minimization of mutual information between the sensors. 

In parallel to  blind source separation studies, unsupervised learning rules based on informa- 
tion theory were proposed by Linsker [12]. The goal was to maximize the mutual information 
between the inputs and outputs of a neural network. This approach is related to the principle 
of redundancy reduction suggested by Barlow [13] as a coding strategy in neurons. Each neuron 
should encode features that are as statistically independent as possible from other neurons over 
a natural ensemble of inputs; decorrelation as a strategy for visual processing was explored by 
Atick [14]. Nadal and Parga [15] showed that in the low-noise case, the maximum of the mutual 
information between the input and output of a neural network implied that the output distribu- 
tion was factorial; that is, the multivariate probability density function (p.d.f.) can be factorized 
as a product of marginal p.d.f.s. Roth and Baram [16] and Bell and Sejnowski [3] independently 
derived stochastic gradient learning rules for this maximization and applied them, respectively, 
to forecasting, time series analysis, and the blind separation of sources. Bell and Sejnowski [3] 
put the blind source separation problem into an information-theoretic framework and demon- 
strated the separation and deconvolution of mixed sources. Their adaptive methods are more 
plausible from a neural processing perspective than the cumulant-based cost functions proposed 
by Comon [7]. A similar adaptive method for source separation was proposed by Cardoso and 
Laheld [17]. 

Other algorithms for performing ICA have been proposed from different viewpoints. Max- 
imum likelihood estimation (MLE) approaches to ICA were first proposed by Gaeta and La- I 

coume [18] and elaborated by Pearlmutter and Parra [I]. Girolami and Fyfe [19,20], motivated 
by information-theoretic indices for exploratory projection pursuit (EPP), used marginal negen- 
tropyl as a projection index and showed that kurtosis-seeking projection pursuit will extract one 
of the underlying sources from a linear mixture. A multiple output EPP network was developed 
to allow full separation of all the underlying sources [20]. Nonlinear PCA algorithms for ICA 
which have been developed by Karhunen and Joutsensalo [5], Xu [22] and Oja [6] can also be 
viewed from the infomax principle since they approximately minimize the sum of squares of the 
fourth-order marginal cumulants [7] and therefore, approximately minimize the mutual informa- 
tion of the network outputs [4]. Bell and Sejnowski [3] have pointed out a similarity between their 
infomax algorithm and the Bussgang algorithm in signal processing and Lambert [8] elucidated 
the connection between three different Bussgang cost functions. We show here how the Bussgang 
property relates t o  the infomax principle and how all of these seemingly different approaches can 

l A  general term for negentropy is relative entropy [21]. 
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be put into a unifying framework for the source separation problem based on an information 
theoretic approach. 

The original infomax learning rule for blind separation by Bell and Sejnowski [3] was suitable 
for super-Gaussian sources. Girolami and Fyfe [19] derive, by choosing negentropy as a projec- 
tion pursuit index, a learning rule that is able to blindly separate mixed sub- and super-Gaussian 
source distributions. Lee, Girolami and Sejnowski [23] show that the learning rule is an extension 
of the infomax principle satisfying a general stability criterion and preserving the simple architec- 
ture of Bell and Sejnowski [3]. When optimized using the natural gradient [24], or equivalently, 
the relative gradient [17], the learning rule gives superior convergence. Simulations and results 
on real-world physiological data show the power of the proposed methods [23]. 

This paper is organized as follows. In Section 2, we formulate the problem and the assuinptions 
usually made in ICA. Section 3 reviews the infomax approach by Bell and Sejnowski [3]. Sec- 
tions 4-8 describe, respectively, the relation between infomax, MLE, negentropy maximization, 
nonlinear PCA, higher-order statistics, and the Bussgang property. In Section 9, we discuss con- 
vergence properties and stability of the proposed algorithms. Potential applications and further 
research issues are discussed in Section 10. 

2. PROBLEM STATEMENT AND ASSUMPTIONS 

Assume that there is an M-dimensional zero mean vector s(t) = [sl(t), . . . , sM(t)lT, whose 
components are mutually independent. The vector s(t) corresponds to M independent scalar 
valued source signals si(t). We can write the multivariate 11.d.f. of the vector as the product of 
marginal independent distributions. 

A data vector x(t) = [xl(t), . . . , xN(t)lT is observed at each time point t ,  such that 

where A is an N x M scalar matrix. The mixing is assumed to be instantaneous so there 
is no time-delay between the source i mixing into channel j .  Generalizations to time-delayed 
and convolved sources are considered in the discussion. Instantaneous mixtures occur when the 
difference in time of arrival between the sensors can be neglected. As the components of the 
observed vectors are no longer independent, the rhultivariate p.d.f. will not satisfy the product 
equality in equation (1). The mutual information I (x)  of the observed vector is given by the 
Kullback-Leibler (KL) divergence D(. 11  .) of the multivariate density from the density written in 
wroduct form 

z=1 

The mutual information is positive and is equal to zero only when the components x, are inde- 
pendent [21]. 

The goal of ICA is to find a linear transformation W of the dependent sensor signals x that 
makes the outputs as independent as possible: 

where u is an estimate of the sources. The sources are exactly recovered when W is the inverse 
of A up to a permutation and scale change. 

P = R S = W A ,  (5) 



4 T.-W. LEE et al. 

where R is a permutation matrix and S is the scaling matrix. The two matrices define the perfor- 
mance matrix P so that if P is normalized and reordered, a perfect separation leads to the identity 
matrix. For the linear mixing and unmixing model, we adopt the following assumptions [7,17]. 

(1) The number of sensors is greater than or equal to the number of sources N > M. 
(2) The sources s(t) are at each time instant mutually independent. 
(3) At most one source is normally distributed. 
(4) No sensor noise or only low additive noise signals are permitted. 

Assumption 1 is needed to make A a full rank matrix. Assumption 2 is the basis of ICA and can 
be expressed as follows: / 

M 

P ( 4 4 )  = n P (sz(t)) . 
,= 1 

(6) 

For Assumption 3, the unmixing of two Gaussian sources is ill posed when the sources are 
white random processes. Nonwhite Gaussian processes may be recovered with time-decorrelation 
methods if they have different spectra [25]. However, pure Gaussian processes are rare in real 
data. Assumption 4 is necessary to satisfy the infomax condition, in which the mutual information 
between outputs is only minimized for the low noise case [12,15]. However, one can imagine that 
noise is an independent source itself and if as many sensor outputs are available as the number 
of sources, the noise signal can be segregated from the mixtures. 

3. INFORMATION MAXIMIZATION 

Nadal and Parga [15] showed that in the low-noise case, the maximum of the mutual information 
between the inputs x and outputs y of a neural processor implied that the output distributions 
were factorial. In other words, maximizing the information transfer in a nonlinear neural net- 
work minimizes the mutual information among the outputs (factorial code) when optimization is 
performed over both the synaptic weights W and the nonlinear transfer function g(u). Roth and 
Baram [16] and Bell and Sejnowski [3] independently derived stochastic gradient learning rules 
for this maximization and applied them, respectively, to forecasting, time series analysis, and 
the blind separation of sources. Bell and Sejnowski [3] proposed a simple learning algorithm for 
a feedforward neural network that blindly separates linear mixtures x of independent sources s 

using information maximization. They show that maximizing the joint entropy H(y) of the out- 
put of a neural processor can approximately minimize the mutual information among the output 
components yi = g(ui) where g(ui) is an invertible monotonic nonlinearity and u = Wx. 

The joint entropy at the outputs of a neural network is 

where H(y,) are the marginal entropies of the outputs and I(y1,. . . , yN) is their mutual informa- 
tion. Maximizing H(yl , .  . . , yN) consists of maximizing the marginal entropies and minimizing 
the mutual information. The outputs y are amplitude-bounded random variables, and there- 
fore, the marginal entropies are maximum for a uniform distribution of y,. Maximizing the joint 
entropy will also decrease I (y l , .  . . , yN) since the mutual information is always positive. For 
I (y l , .  . . , yN) = 0, the joint entropy is the sum of marginal entropies 

The maximal value for H(yl , .  . . , y ~ )  is achieved when the mutual information among the 
bounded random variables yl, . . . , y~ is zero and their marginal distribution is uniform. As we 
will show below, this implies that the nonlinearity g(u,) has the form of the cumulative density 
function (c.d.f.) of the true source distribution s,. Bell and Sejnowski [3] chose the nonlinearity 
to be a fixed logistic function. This is equivalent to assuming a prior distribution of the sources: 
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a super-Gaussian distribution with heavy tails and a peak centered a t  the mean. The weights W 
are determined by maximizing the joint entropy with respect to W. We can rewrite the derivative 
of equation (7) with respect to W can be written in terms of the KL divergence between the 
multivariate uniform distribution denoted as pl ( y )  and multivariate uniform estimate p ( y ) .  

In the limit when the transfer function g(u,) and W are optimized, the joint entropy H ( y )  is 
maximum and p ( y )  = p l ( y )  so that I ( y )  = 0. If g(u i )  is an invertible mapping from u, t o  y,, the 
KL divergence in equation (9) is equal to the KL divergence between the estimate of the source 
distribution p ( u )  and the sources p(s ) ,  

D ( P ~ ( Y )  11 P ( Y ) )  = D (P(s)  II ~(41, (10) 

l since the KL divergence is invariant under an invertible transformation. If the mutual information 
between the outputs is zero I ( y l , .  . . , y N )  = 0 ,  the mutual information before the nonlinearity 
I (u l , .  . . , uN) must also be zero since the nonlinearity does not introduce any dependencies. The 
relation between yi and u, is [26] 

For a uniform distribution of yi, it follows that 

This means that ui is an independent variable with a distribution that is approximately the form 
of the derivative of the nonlinearity. In the case of the logistic function, the appropriate p.d.f. is 
shown in Figure 1 (bottom). The distributions of music and speech signals can be approximated 
by this p.d.f. 

Logistic function 

Derivate of the log~stc function 
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Figure 1. (a) logistic function (y = 1/(1 + exp(-z))), and (b) i t s  derivative (g = 

YO - Y)). 
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Bell and Sejnowski [3] separated mixtures of several music and speech signals using infomax with 
a logistic activation function. Will infomax always minimize the mutual information? Bell and 
Sejnowski [3] answer this question in a thought experiment where they illustrate that when there 
is a mismatch between the source p.d.f. and the slope of the nonlinearity, a maximal joint entropy 
value can be achieved with I (y )  > 0 that is higher than the joint entropy with I ( y )  = 0 (due 
to lower marginal entropies). In those cases, infomax will not minimize the mutual information. 
This occurs when there is an excessive mismatch between the nonlinearity and cumulative density 
function (c.d.f.) of the true source distribution. 

A simple architecture that can realize the mapping from x to y is a single-layer feedforward 
neural network with a nonlinear output activation function. The nonlinearity g,(u) is essential for 
minimizing the mutual information to perform ICA. Another motivation for the choice of g,(u), 
e.g., a sigmoid function, is that it provides a combination of higher-order statistics through its 
Taylor series expansion that is essential to minimize higher-order correlations. The learning rule 
can be derived by maximizing the output entropy H(y)  of a neural processor, as proposed by Bell 
and Sejnowski 131. We can relate p(x) to p(y) by the determinant of the Jacobian matrix J (x )  

(see [26l> 

P(Y) = 
P(X) 

ldet J(x)I ' (13) 

See Figure 1 in [3] for a visual interpretation of the optimal information flow. Evaluating the 
expected value of the logarithmic representation for equation (13) gives the output entropy H(y):  

This can be maximized with respect to W and it is equivalent to maximizing the absolute value 
of the Jacobian determinant of the transfer function 

For the first term in equation (15): & log I det(W)I = w V T .  In the second term, the product 
splits up into sums of log-terms, in which only one is dependent on a particular Wij, and hence, 

where p(u) is the gradient vector of the log likelihood called the score function [27] 

The general learning rule is now 

An efficient way to maximize the joint entropy is to follow the 'natural' gradient 

as proposed by Amari et al. [28], or equivalently the relative gradient [17]. Here WTW rescales 
the gradient, simplifies the learning rule in equation (18) and speeds convergence considerably. 
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As we show here, the general learning algorithm in equation (19) can be derived from several 
theoretical viewpoints such as MLE [I], infomax [3], and negentropy maximization [4]. 

An elegant way of parameterizing the learning rule in equation (19) to separate mixed sub- 
and super-Gaussians has been proposed by Girolami [29] and Girolami and Fyfe [19] by choosing 
negentropy as a projection pursuit index. In [29], a parametric density model is employed for 
sub- and super-Gaussian sources resulting in a simple form for p,(u,): 

ui + tan11 (ui) , super-Gaussian, 
cPi (u,) = 

ui - tanh (ui) , sub-Gaussian, 

giving 

where K is a diagonal matrix with elements sign (k4(u;)) and lie(ui) is the lturtosis of the source es- 
timate u,. An extended infomax algorithm also yields the learning rule in equation (21) where K is 
a function of the nonlinearity used in p(u)  satisfying a general stability criterion [30,31], presented 
in Section 9.1. 

4. NEGENTROPY MAXIMIZATION 

Another approach related to minimizing the mutual information between the u,s is maximiz- 
ing negentropy [32]. Girolami and Fyfe [19,20], motivated by information-theoretic indices for 
exploratory projection pursuit (EPP), used marginal negentropy as a projection index. EPP  is 
a statistical method that allows structure in high-dimensional data to be identified [33]. This 
is achieved by projecting the data onto a low-dimensional subspace and searching for structure 
in the projection. Projections that identify non-Gaussian structure such as multiple modes are 
interesting from the point of view of identifying potential higher-order structure within high- 
dimensional data. Projections that are maximally non-Gaussian are highly desirable in pursuing 
informative views of the data [33]. Girolami [32] showed that if the observed data fits a latent vari- 
able model [34], which conforms to the deterministic ICA mixing model, then a kurtosis-seeking 
projection pursuit will extract one of the underlying sources. A multiple output EPP network 
was also developed to allow full separation of all the underlying sources [32]. Marriot in [35] 
noted that approximately symmetrical and almost Gaussian (low kurtosis) clustered projections 
can sometimes be difficult to identify with indices based on third- and fourth-order moments 
and suggested the use of indices based on information theoretic criteria. Girolami [32] developed 
single and multiple output algorithms for EPP based on negentropy maximization. He showed 
that a negentropy maximizing pursuit will perform a general ICA on sources which may be either 
sub- or super-Gaussian. The negentropy of the output neurons can be stochastical1y maximized 
by driving their distributions maximally away from Gaussian distributions. Girolami [32] showed 
that maximizing the output data negentropy is identical to minimizing the mutual information 
of the output data which has been shown to be equivalent to ICA for observed data that can be 
modeled as a sum of independent latent variables. A brief derivation follows. 

Negentropy is defined as the KL divergence between p(u) and the Gaussian distribution pG(u) 
with the same mean and covariance as p(u) (see [21]) 

where u is the vector of estimated sources given the parameters W ( u  = Wx) .  The parametric 
N form of the output is factorable n z l p ( u , )  with the equality p(u) = n,=lp(u,) holding only 

when all uis are independent, i.e., the mutual information is zero (I(u)  = 0). Assume that u is 
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decorrelated and that uis  are factorable but not factorized (J(u) # zE1 J ( u i ) ) .  

N N 
" .,,,. , " .  . . . ",. .. . . . ... . . . ... .... ..... . . .. .. . ... .. ... . ... .. z-T(~i) = ~ D ( P ( u ~ )  I1 PG ( ~ i l l  

(25)  

(26)  

(28 )  

(29 )  

g ( ( 2 ~ e ) ~  det ( (uuT)) )  . (31 )  

G ( U )  d u  is the entropy 
p ~ ( u )  yield the same 

its covariance matrix is 
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This leads to exactly the same learning rule as in Section 3.3 using infomax. Maximizing 
EL, J(ui)  with respect to W in equation (31) gives 

Note that as in equation (19), only the first and second terms in equation (36) depend on W :  

Although the derivation of the learning rule in equation (36) depends on the assumption that u is 
decorrelated, Girolami [32] showed that a slightly different objective function related to maxi- 
mizing the marginal negentropies leads to the same learning algorithm in equation (36) without 
making the assumption that u is decorrelated. 

5. MAXIMUM LIKELIHOOD ESTIMATION 
The goal of MLE is to model the observation x as being generated from latent variables s  via 

a linear mapping A. In the noiseless case, we can use a parametric density estimator $(x; a )  to 
find the parameter vector a that minimizes the difference between the generative model fi(x; a )  
and the observed distribution p(x). Note that a can be considered the basis vectors of A so that 
$(x;  a )  is an estimate of the observed vector p(x). The difference between the estimate and the 
observation can be measured using the KL divergence 

where p(x) is the p.d.f. of the observation x and p(x; a )  is a parametric estimate of the distri- 
bution p(x).  The divergence D(p(x) 11 $(x; a ) )  is zero only if our estimate p(x; a )  matches the 
observation p(x).  Pearlmutter and Parra [I] and Cardoso [2] showed that infomax and MLE are 
equivalent for ICA, as briefly described here. The normalized log-likelihood of $(x; a )  is 

where N is the number of independent realizations of x.  The log-likelihood coliverges in proba- 
bility, by the law of large numbers, to its expectation 

p(x) log$(x; a)  dx. 

Note that this can be rewritten 

= H(x)  - D ( ~ ( 4  II $(x; a ) )  . 
Since H ( x )  is not dependent on W, maximizing the log-likelihood minimizes the KL divergence 
between the observed density p(x) and the estimated density $(x; a ) ,  

Since A is an invertible matrix and the KL divergence is invariant under an invertible transfor- 
mation, minimizing the KL divergence in equation (41) minimizes the KL divergence between 
the estimate of the sources p(u) and the true source distribution p(s). 

Therefore, equation (42) and equation ( 9 )  are equivalent for ICA. 
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6. HIGHER-ORDER MOMENTS AND CUMULANTS 

In the previous sections, the nonlinearity of the output approximated the c.d.f. of the true 
source density. Here we examine cumulants to study the higher-order correlations between the 
sources. 

If the observed vector has a covariance matrix (xxT) = E{xx~) ,  then the mutual information 
in equation (3) can be expressed as [7] 

where (2:) in equation (43) are the diagonal elements of the covariance matrix. J (x )  is the 
multivariate negentropy as in equation (22) and J(x,) are the marginal negentropies 

If a spatial whitening transformation (diagonalization of the covariance matrix) is used to remove 
the second-order redundancy in the data 2 = Vx, where V denotes the whitening transformation 
matrix and (%gT) = I, then det((5ET)) = 1 and the mutual information of the spatially white 
data reduces to 

A further transformation u = W2 using higher-order correlations is required to reduce the 
remaining redundancy within the vector for non-Gaussian sources. This transformation seeks an 
orthogonal matrix that accounts for the correct rotation of the data. Comon [7] minimized the 
degree of dependence among outputs using contrast functions approximated by the Edgeworth 
expansion of the KL divergence. He determined the orthogonal matrix from the higher-order 
cumulants. Note that cumulants are used to describe characteristics of non-Gaussian processes. 
The truncated Edgeworth expansion [36] of p(u2) written in terms of its nth-order cumulants and 
Hermite polynomials, denoted as 5, and h,, respectively, is 

where pG(u,) denotes the Gaussian density. The cumulants k, are coefficients related to the form 
of the p.d.f. of u,, and they can be expressed in terms of moments. The terms lzk(u,) are the 
orthogonal Hermite polynomials defined as [36] 

which can be computed recursively 
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The validity of the truncated series expansion approximation in equation (46) is discussed in [36]. 
Expansion terms higher than fourth order can lead to excessive fluctuations at the tails of the 
distribution leading potentially to negative values. Therefore, the expansion in equation (46) is 
truncated a t  fourth order. After substituting the expression for marginal negentropies J(u,) in 
equation (44) into equation (46) [7], J(u,) becomes 

1 1 7 1 
J ( s )  - - k$ (i) + - k i  (i) + - k! (i) + , k$ (i) ka (i) . 

12 48 48 

If we make the assumption that the p.d.f. of the signals under consideration are approximately 
symmetric, then the third-order cumulants will have a negligible contribution in equation (49). 
The mutual information in equation (43) of the transformed data u is now approximated by 

J ( u )  is invariant under an orthogonal transformation 

1 
= H(u)  - - log ( ( 2 7 ~ ) ~  det ((uuT))) 

2 
1 

= H (Z) + log (det(W)) - - log ( ( 2 7 ~ e ) ~  det (W ( l k T )  wT)) (51) 
2 

1 
= H (2) - - log ( ( 2 7 ~ e ) ~  det ((ZT))) 

2 
= H ( 2 )  - HG(jt.) = J ( 1 ) ,  

where Hc(%) is the entropy of a normal density, the following matrix determinant equalities have 
been employed: 

det (W (kgT) wT) = det(W) det ( ( lkT))  det (wT) , (52) 

det (wT) = det(W). (53) 

Since u is a result of a rotation of 2, the negentropy J (u )  is equal to J (2 )  and the approximation 
for mutual information can be rewritten as L 

Thus, under an orthogonal transformation, the mutual information of the data can be approx- 
imately minimized by maximizing the sum of squares of the fourth-order marginal cumulants. 
Maximizing the contrast function is approximately equivalent to maximizing the sum of marginal 
negentropies. This corroborates the claim that maximizing the marginal negentropies with re- 
spect to W minimizes mutual information. 

Therefore, Comon [7] proposed the following contrast function: 
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Here, the higher-order statistics are approximated by cumulants up to 4th-order and their maxi- 
mization requires intensive computation using a batch-based method. 

Simulation results in [37,38] and results on experimental data in [39] indicate that 4t"-order 
cumulants are not sufficient to completely separate mixtures of several sources (e.g., N > 5). This 
suggests that a correct rotation of the whitened data requires more than 4th-order statistics with 
increasing number of sources. This is consistent with the assumption that the Taylor expansion 
of the nonlinear function used in infomax, negentropy maximization, and MLE provides statistics 
higher than fourth order necessary to make the data as independent as possible. 

7. NONLINEAR PCA 
The nonlinear extension of Oja's principle component analysis (PCA) subspace network [40], 

originally developed by Karhunen and Joutsensalo [5] and Xu [22], has no apparent connection to 
the infomax principle, but has been shown to separate whitened linear mixtures of sources [41-431. 
A major shortcoming of the algorithm is that is has been restricted to the separation of sub- 
Gaussian sources, because of stability requirements. Another property is that the data have to be 
prewhitened. Those two characteristics have led Girolami and Fyfe [4] to relate the nonlinear PCA 
algorithm to the infomax principle showing that it is an approximate online adaptive equivalent 
of the batch algorithm proposed by Comon [7]. 

In this section, we summarize the results in [4] and their generalization to cope with sub- and 
super-Gaussian source distributions. It  is an alternative form of the nonlinear PCA rule which 
satisfies the dynamic and asymptotic stability criteria for the algorithm [4]. 

In nonlinear PCA, the input signals x are first prewhitened giving 2,  where (%iT) = I. The 
learning rule is an approximate stochastic gradient descent algorithm that minimizes the mean- 
squared error incurred in representing a vector by a nonlinear projection f ( W i )  onto a basis of 
reduced dimensionality 

i = i f + e = W f ( W % ) + e ,  (57) 

where 2' is a nonlinear estimate of k and e denotes the estimation error. Next we minimize a cost 
function C ( W )  to find a linear transformation W giving u = W i ,  where u are the estimated 
sources and W is constrained to be orthonormal wTw = I. 

where C ( W )  is a scalar resulting from an inner product and lT is a row vector of length N with 
ones as its elements. Rewriting equation (58) in its transpose form gives 

C(W)  = E { ( k T i  - f ( W i )  - kT w f ( W i )  + f (W2)  wT w f ( W i ) )  ) . (59) 

Since the observed data is spatially white, it follows that E{wT2iTw) = I. We assume unit 
variance for the independent components ui. We can rewrite the cost function as 

For a polynomial such as (f(u) = u3/3) or ( f (u)  = -u3/3) or a hyperbolic nonlinear function 
which has a cubic as the dominating element, we can write for f (u) = u3/3, 

Now the rightmost term ( u ~ ) ~ u ~ / ~  can be neglected as (2/3)uTu3 >> ( u ~ ) ~ u ~ / ~  is satisfied for 
white standardized data [29]. The cost function can be rewritten as 
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where N is the number of sources and the term ( ~ { u : )  - 3) is the expression for the fourth-order 
marginal cumulant (unnormalized kurtosis). Hence, for spatially white standardized data, the 
cost function can be considered as the negative sum of the marginal fourth-order cumulants of 
the linearly transformed data. 

N 

Minimizing the cost function in equation (63) is equivalent to maximizing the sum of fourth-order 
cumulants when the kurtosis of the estimated sources is positive (super-Gaussian). Optimization 
of equation (63) with respect to W is equivalent to maximization of the sum of squares of the 
marginal fourth-order cumulants, for mixtures of strictly super-Gaussian sources. The function 

is equivalent to Comon's contrast function in equation (56). Comon [7] has shown that maximizing 
this contrast function approximately minimizes the mutual information. 

Let us consider the case when the activation function is f (u) = -u3/3. Applying the same 
reduction as above, the cost function has the following form: 

Minimizing the cost function in equation (65) is equivalent to maximizing the sum of fourth-order 
cumulants when the kurtosis of the estimated sources is negative (sub-Gaussian). Hence, the 
contrast function is the same as in equation (64), but for a different nonlinear term. The negatively 
cubic term can be interpreted as accounting for a different prior on the source distribution. We 
can summarize the differences in the learning rules in equations (63) and (65) and formulate a 
general cost function [4]. 

M 

where sign(f (u)) is the sign function of the nonlinearity used at  the output neurons and f (u) = 

f u3/3. Note that this new form of minimization of the signal representation error criterion is 
valid for observed data which is zero-mean and spatially white. 

The MSE (mean-squared-error) of the cost function in equation (66) relates to the mutual 
information as shown in Section 6 under the further assumption that probability densities are 
more or less symmetric so that the third-order cumulant terms within expansion can be removed 
from the fourth-order approximation of the Edgeworth expansion. The mutual information can 
then be approximated as follows (see Section 6): 

As in Section 6, maximizing the marginal negentropies with respect to W minimizes mutual 
information giving 

which corroborates that maximizing the sum of marginal cumulants or minimizing the MSE of 
the cost function derived for nonlinear PCA can be interpreted as an approximate information- 
theoretic contrast for ICA. 
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8. BUSSGANG ALGORITHMS 

Bussgang algorithms have been introduced by Bellini [44] to perform blind deconvolution. Lam- 
bert [8] proposes three different multichannel blind deconvolution (separation and deconvolution) 
algorithms based on three classes of Bussgang cost functions. These algorithms are similar to 
the information-theoretic learning algorithm [3], but the relationship to the infomax algorithm is 
not obvious. Intuitive explanations have been proposed by Bell and Sejnowslti [3], Lambert and 
Bell [45], Girolami and Fyfe [20], and Lee et al. [46]. Here, we show how the Bussgang algorithm 
can be interpreted as an information-theoretic cost function. 

A white zero-mean stochastic process ut has the Bussgang property if it satisfies [47] 

where the subscript denotes time-points t and its time-shifted version t + k and the Bussgang 
nonlinearity f (.) is some monotone nonlinear function. The Bussgang property in equation (69) 
states that the autocorrelation function of ut is equal to the cross-correlation function between the 
process ut and the output of a nonlinearity f (ut) where both correlation functions are measured 
for the same lag. 

We may rewrite the Bussgang property in equation (69) for spatial processes as follows: 

where the subscripts i, j denote independent (white) stochastic processes. In fact, equation (69) 
differs from equation (70) only insofar as the subscripts refer to spatial rather than temporal 
samples, which allows us to relate the Bussgang property to the spatial ICA formulation. Now, 
the left side of equation (70) describes the second-order cross-correlation between two estimated 
sources and the right side of equation (70) accounts for higher-order cross-correlation between 
these estimates due to the nonlinearity f (.) that can be thought of as a combination of higher- 
order terms in a Taylor series expansion. 

A common way to derive a learning rule in blind deconvolution is to estimate the mean- 
squared error between the estimate u, and the true source s,. However, since the true source is 
not available, another estimator is needed. A valid estimator would be a nonlinear estimate f (ui) 
where the form of the function f(.) has to reflect some information about the true signals si. 
Define a cost function C that minimizes the MSE between the source estimate u, and a Bussgang 
nonlinear estimate f (u,). For simplicity, we consider one source estimate u,: 

The form of the Bussgang nonlinearity can be derived from the maximum a posteriori (MAP) 
model by forming a conditional log-likelihood model given the observed data as follows. 

For an independent source s,, the estimated source u, can be modeled as the source s, plus 
an independent noise source n such that u, = s, + n. Let us define an error variable z, as the 
difference between the true source signal and the estimated source signal 

We assumed that u, can be estimated by the nonlinear function f (u,) giving 

The conditional density of the source given the variable z, can be described by the MAP model 

p (s, I 2%) = P (2% I s,) P (st) . (74) 
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Assume that p(zi I si) can be modeled as a white zero-mean Gaussian process giving 

where K is a constant and a$ = a: +a: is the variance of ui. The justification of a Gaussian pro- 
cess for the conditional estimator p ( ~ ,  I si) is that the sum of N ( N  >> 1) zero-mean independent 
sources si sum up to a Gaussian observation due to the central limit theorem. Substituting equa- 
tion (75) in equation (74) and taking the logarithm of the conditional estimate in equation (74), 

The derivative of equation (76) with respect to si gives 

When the estimation error is minimized, equation (77) is zero and solving for Z, gives the following 
expression: 

Now comparing equation (78) with equation (73) and assuming unit variance for u, (a: = I ) ,  
the form for the Bussgang nonlinear estimator must satisfy 

which is proportional to the derivative of the log-density of the true source distribution. 
We can apply equation (79) to the initial Bussgang property by rewriting equation (70) in 

matrix form 

The left side of equation (80) is the identity matrix when we assume that W = A-l. Multiplying 
equation (80) with W gives 

[I - E { f  (u)uT}] W = 0. @I) 

The optimal Bussgang nonlinearity f (u) when applied to ICA must be equivalent to 

which is precisely the score function p(u) in equation (17). Therefore, we have 

which is exactly the convergence criterion for the infomax learning rule in equation (19). The 
justification of the Bussgang nonlinearity in equation (79) also corroborates the infomax principle 
and its application to blind source separation and blind deconvolution. 

9. PROPERTIES OF BLIND SOURCE 
SEPARATION ALGORITHMS 

We review and discuss important properties of ICA algorithms used in the source separation 
problem. 
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9.1. Convergence 

The insights in Sections 3-8 suggest that the estimation of the true source densities should 
be crucial to extract the sources. Many researchers have therefore tried to find the separat- 
ing matrix W as well as a parametric estimate of the nonlinearity associated with the source 
density [1,48,49]. Pearlmutter and Parra [I] proposed a contextual ICA (cICA) that assumed a 
weighted sum of parametric logistic functions to model the source density. Moulines, Cardoso 
and Gassiat [48] and Xu et al. [49] model the underlying p.d.f. with mixtures of Gaussians show- 
ing that they can also separate sub- and super-Gaussian sources. These parametric modeling 
approaches in general are computationally expensive because they learn complex density param- 
eters. Empirical results by Lee et al. [23] and Makeig [50] on electroencephalographic (EEG) 
data and data from event related potentials (ERP) using cICA indicate that it can fail to find 
independent components when the number of time-samples is too small to give a reliable density 
estimate (e.g., 600 data points for ERPs). 

However, simulation results performed by many researchers show that ICA algorithms with 
a fixed nonlinearity converge to a separating solution although the nonlinearity is only a crude 
approximation of the underlying sources. Bell and Sejnowski [3] reported that the infomax algo- 
rithm would separate 10 super-Gaussian sources such as music and speech using only one logistic 
function that imposes a super-Gaussian prior. Lee et al. [23] report that the 10 sound sources 
used by Pearlmutter and Parra [I] can be separated easily and with faster convergence than cICA 
using the logistic function instead of a parametric density estimator. These empirical results sug- 
gest that simple density estimators may be sufficient to separate mixed sources. However, a more 
detailed analysis needs to be done to determine the conditions on the source densities under 
which the algorithm converges to the correct separation [30]. 

The units of the learning algorithm on the left and right side of equation (18) do not match, 
and hence, the rate of convergence depends on the scales of the axes. The natural gradient [24] 
or relative gradient [17] greatly improves convergence of ICA by making the gradient invariant 
to the scale on the axes. The normal entropy gradient (Euclidean gradient) assumes that the 
space of W is orthonormal; that is, each wzj is of unit length and points in an orthogonal 
direction to the others. In this case, the metric tensor is the identity matrix wzj.wkl = S(2j)(kl). 
However, Amari [24] has shown how W is a Riemannian space with a nonorthonormal metric 
tensor. Fortunately, in the case of ICA, convergence can proceed as fast as if the space of W was 
orthonormal, if we only rescale the Euclidean gradient to the natural gradient as follows: 

where f (w) denotes the natural gradient, and v f ( W )  denotes the Euclidean gradient. The 
units now match and convergence is optimal. A detailed derivation of this intuitive explanation 
is presented by Amari [24] and Yang and Amari [51]. 

9.2. Stability 

A generic stability analysis of separating solutions was examined by Cardoso and Laheld [17], 
Pham and Garrat [52] and Amari et al. [53], and more recently by Cardoso [30]. In the analysis, 
the mean field updates were approximated by a first-order perturbation in the parameters of the 
separating matrix. The linear approximation near the stationary point is the gradient of the 
mean field at  the stationary point. The real part of the eigenvalues of the derivative of the mean 
field must be negative so that the parameters on average return to the stationary point. 

A sufficient condition guaranteeing asymptotic stability can be derived [30] so that 
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and 
(P, (u,) = U, + k, tanh (u,) . 

Substituting equation (87) in equation (86) gives 

K, = E {k,sech (u,) + 1) E {u:) - E {[k, tanh (u,) + u,] u,) (88) 

= k, (E {sech (u,)) E {u:) - E {[tanh (u,)] u,)) . (89) 

To ensure K, > 0, the sign of k, must be the same as the sign of E{sech2(u,))E{u~) - 
E{[tanh(u,)]u,). Therefore, we can use the learning rule in equation (20) where the k,s are 

k, = sign (E {sech (ui)} E {u:) - E {[tanh (u,)] u,)) . (90) 

10. DISCUSSION 

10.1. Conclusions 

We have unified several lines of research on ICA within an information-theoretic framework 
and conjecture that this framework is well suited to further investigate ICA from many different 
theoretical viewpoints. 

10.2. Applications to Real World Problems 

The extended infomax algorithm has recently been applied to real world problems such as 
analyzing electroencephalographic (EEG) data [54,55] and functional magnetic resonance imaging 
(fMRI) data [39,56]. Makeig e t  al. [56] showed that the Bell and Sejnowski [3] algorithm was able 
to linearly decompose EEG activity and artifacts. Jung et al. [55] show that the extended infomax 
algorithm could additionally extract sub-Gaussian artifacts such as line noise and eye movements. 
McKeown et  al. [39] have used the extended infomax algorithm to investigate task-related human 
brain activity in fMRI data. They made the assumption that the sources underlying the fMRI 
recordings were spatially independent rather than temporally independent as in the case of EEG, 
and found both consistently and transiently task-related brain activations. 

Another difficult real-world problem is the separation of convolved and time-delayed sources. 
Recently, blind separation experiments of real recorded audio data have been addressed by several 
researchers. Two voices recorded in a room with two microphones (the cocktail party problem) 
can be separated taking into account time delayed and convolved sources [8,46,57-611. An appli- 
cation to underwater communication has been considered by Li and Sejnowslti [62]. 

10.3. Limitations and Future Research 

Nonlinear mixing problem 

ICA starts with a linear model for mixing. Researchers have recently tackled the problem 
of nonlinear mixing. Burel [63], Yang et  al. [64], Taleb and Jutten [65], Lee et al. [GG], and 
Pajunen and Karhunen [67] proposed extensions when linear mixing is combined with certain 
nonlinear mixing models. Other approaches include self-organizing feature maps to identify 
nonlinear features in the data [68]. However, these methods are not generally applicable. It  may 
be necessary to restrict the model sufficiently to allow a solution. 

Overcomplete ICA 

Overcomplete ICA is applicable when there are more sources than sensors N < M. With 
only one or two sensors, can more than two sources be recovered? An interesting discussion 
is presented by Jutten and Cardoso [69]. More recently, preliminary results by Lewicki and 
Sejnowski [TO] suggest that an overcomplete representation of the data can to some extent extract 
the independent components using a priori knowledge of the source distribution. 
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Noisy ICA 

Only a few papers have studied ICA in the presence of noise [15], and much more work needs 
to be done to determine the effects of noise on performance. Noise can be treated in a Bayesian 
framework using overcomplete basis functions [70] or generative models [71]. 

Nonstationarity problem 

If the sources are stationary, i.e., sources may appear, disappear or move (speaker moving in a 
room), the weight matrix W could change completely from one time point to the next. Unsuper- 
vised methods are needed to handle the abrupt changes that occur in real environments. Nadal 
and Parga [72] have proposed some analytical methods for time-dependent mixtures. Murata e t  
al. [73] suggest an adaptation of the learning rate to cope with changing environments. 

There are many other potential applications of ICA and a few are mentioned here. 

ICA on recordings from the olfactory system 

Hopfield [74] has suggested that the olfactory system may use a factorial code representation. 
We are currently applying ICA to data from the olfactory system [75] to test this hypothesis. 

ICA in communications 

Complex-valued signal mixing occurs in radio channels. This problem occurs in current mobile 
communication applications such as CDMA (code division multiple access) systems. Torkkola [76] 
has incorporated prior knowledge about the source distributions into the nonlinear transfer func- 
tion to adaptively determine time-varying mixing matrices. In simulations, he showed that info- 
max can successfully be applied to unmix radio signals in fading channels. 

ICA for data mining 

Data mining, the extraction of hidden predictive information from large databases, is a pow- 
erful new technology with great potential for helping companies focus on the most important 
information in their data warehouses. For example, Lizhong and Moody [77] have explored ICA 
for financial data modeling. More recently, Girolami et al. [78] suggested ICA based projection 
pursuit networks for data clustering and data mining. 

Biological evidence of ICA? 

Learning rules that only require local information are more biologically plausible. The learn- 
ing rules in equations (18) and (19) for a single feedforward architecture are nonlocal; i.e., the 
neurons must have information about the synaptic weights of neighboring neurons without being 
connected to them. However, there are a number of local learning rules for ICA such as that 
for the recurrent Herault-Jutten architecture and Linsker's [79] network for Bell and Sejnowski's 
ICA learning rule. The extended exploratory projection pursuit network with inhibitory lateral 
connections [80] also has a local learning rule. It  is therefore possible that some form of ICA 
learning rule is used in the brain. Field [81] has suggested that factorial codes are an efficient 
coding strategy for visual sensory processing, and ICA applied to natural images yields localized 
and oriented filters similar to those found in visual cortex [82]. ICA has been used to  extract local 
features for face recognition systems [83]. Factorial coding principles might be found in other 
brain areas such as the cerebellum that might use efficient coding schemes for motor control and 
prediction. 

ICA as a conditional density estimator for classification problems 

Roth and Baram [16] have used ICA as a conditional density estimator for classification and 
time-series prediction. Their results indicate that ICA can be useful as a conditional density 
estimator in classical pattern recognition issues. 
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Hardware implementation of ICA 

An analog VLSI chip implementation of the Herault-Jutten algorithm was fabricated by Cohen 
and Andreou [84]. The implementation of the extended infomax algorithm in VLSI will be a 
challenging goal. An extension to time-delays and convolved mixtures could have significance for 
many practical applications that are computationally demanding. 
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